

Using Fairness as a Theme in General Education Mathematics Courses

Adam Giambrone* (Elmira College)

Kyle Evans (Trinity College)

MAA MathFest 2019

MAA General Contributed Paper Session on Ethics in the Mathematics Classroom

Duke Energy Convention Center, Cincinnati, OH

2:50–3:05pm in Rooms 260, 261, & 262 on Thursday, August 1, 2019

Quantitative Literacy (QL)

- "...an ability to choose and apply mathematical concepts in specific life and work situations that involve quantitative information" (Sikorskii, Melfi, Gilliland, Kaplan, & Ahn, 2011)

Teaching Mathematics for Social Justice (TMfSJ)

- **Students:** "...learners make sense of data in ways that help them see the humanity behind the numbers and to use mathematics as a tool for exposing and analyzing injustices in society..." (Gutiérrez, 2013)
- **Instructors:** "...what are the ethical and moral obligations of...teachers in using injustices as a catalyst for mathematics teaching and learning? Does such an ethical and moral imperative exist?" (Stinson, 2014)

Ethical Teaching:

- Teach the students we have in the communities in which we live.
- Give students a voice so they can take charge of their learning.
(Active learning.)
- Prepare our students for the future. (Content is just a vehicle for learning.)

Teaching Ethics:

- Get students to grapple with the messiness of the real world and think about social and political issues.
- Show students that math can be used to make decisions. Include ethical considerations.
- Have students explore their thinking about what “fairness” means in various scenarios.

Main Themes:

- The world is becoming more quantitative
- Mathematics exists in a sociopolitical context
- Mathematics can be used subjectively (so ethics really matters)
- Students should leave college as informed citizens

Setting: General Education Math Courses

- “When is this actually used?”
- Reduce math anxiety and shift disposition towards the subject
- *Last formal mathematics course!*

Math 1030Q: Elementary Discrete Mathematics (UConn)

- General education course satisfying QL requirement
- Akin to “Great Ideas in Mathematics”
- Spring 2018 semester, 85 students, 3 sections, met 3×50 minutes per week, wide range of class years and majors

Motivation

- Supreme Court cases
- 2020 U.S. Census and the following redistricting cycle
- Metric Geometry and Gerrymandering Group (MGGG)
- Natural fit after existing units on voting theory (1.5 weeks) and fair division theory (1.5 weeks)

The Project

- Approximately 4-5 weeks
- Groups of 2-5 students (most groups of size 3 or 4)
- Project had three main parts, each with a group portion and an individual portion
- Project introduced gradually (increasing mathematical content and sociopolitical content)

Sources of Sociopolitical Content

- ① Blog post “Privilege and Oppression in Math Ed”

<http://feltonkoestler.wixsite.com/realworldmath/single-post/2017/10/25/Privilege-and-Oppression-in-Math-Ed>

- ② YouTube video on racial and partisan gerrymandering

<https://www.vox.com/videos/2017/7/24/16012440/racial-partisan-gerrymandering-redistricting-supreme-court-video>

- ③ ACLU document on the Voting Rights Act

https://www.aclu.org/sites/default/files/field_document/2010_REDISTRICTING_GUIDE_web_0.pdf

- ④ *Chronicle* article on Moon Duchin's work with the MGGG

<https://www.chronicle.com/article/Meet-the-Math-Professor/239260>

- ⑤ FiveThirtyEight article “The Supreme Court is Allergic to Math”

<https://fivethirtyeight.com/features/the-supreme-court-is-allergic-to-math/>

Sources of Mathematical Content

- ➊ Simplified grid models for redistricting
- ➋ Exploration of various CT redistrictings using CT map, CT population data, and FiveThirtyEight website

<https://projects.fivethirtyeight.com/redistricting-maps/connecticut/>

- ➌ Efficiency gap computations

https://www.brennancenter.org/sites/default/files/legal-work/How_the_Efficiency_Gap_Standard_Works.pdf

A Simple Grid Example

Task: Create a map containing 5 districts with 10 voters each that is

- (a) gerrymandered for Stars (29 on grid)
- (b) gerrymandered for Diamonds (21 on grid)
- (c) redistricted to be the “most fair” (according to you and/or your group)

★	★	★	◆	◆	★	◆	◆	◆	★
◆	★	◆	★	◆	★	★	★	★	◆
◆	◆	★	★	★	★	◆	★	★	★
★	◆	◆	★	◆	★	★	◆	◆	★
★	★	◆	◆	★	◆	★	★	◆	★

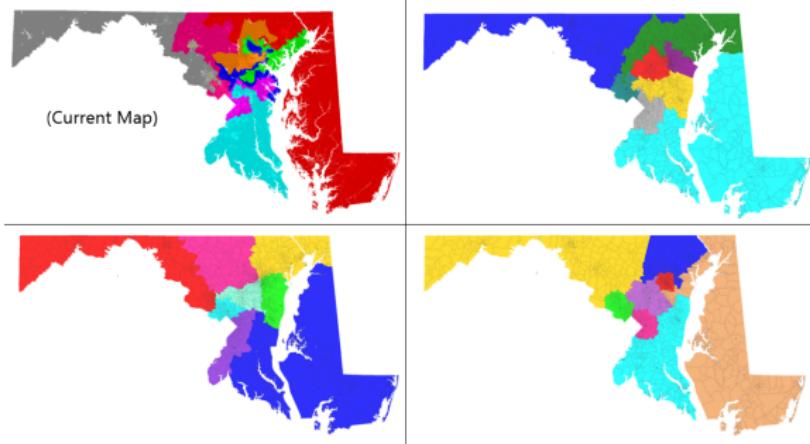
RQ1 - How does students' understanding of “fairness” evolve throughout the course of this project?

- Simple grid examples (group, individual)
- Eight redistricting options for Connecticut (group)
- Compact redistricting option (individual)
- Efficiency gap formula (group)
- Final definition of fairness and its evolution (individual)

RQ2 - What benefits or challenges (cognitive and/or affective) do students report upon completing this project?

RQ3 - What benefits or challenges do instructors report upon designing and implementing this project?

Math 114: Judgment and Decision Making (F18, S19, F19)


- Course units on voting theory, apportionment theory, redistricting/gerrymandering, and game theory
- Group project on redistricting/gerrymandering

Changes:

- **Treat redistricting/gerrymandering like any other course unit**
- **Replace FiveThirtyEight redistrictings with “Dave’s Redistricting App 2020”** (<https://davesredistricting.org/unauth/login.html>)
 - Increase authenticity
 - Move students from consumers to producers
- Increase mathematical rigor (weighted grids, compactness tests)
- Add more writing assignments (e.g. prison gerrymandering)

Group Project (S18 Version)

- Serve as a Redistricting Commission for any state.
- Create a map using Dave's Redistricting App 2020. Satisfy various redistricting conditions. Abide by the Voting Rights Act.

- Write a Proposal Report. Include calculations (and their context), the state's redistricting process, court cases, sociopolitical issues, etc.

5-Week May Term Course (Hopefully May 2020):

- 1 week on voting theory, 1 week on fair division theory, 3-4 weeks on redistricting, all working towards a final gerrymandering project
- **Guest lectures** from professors in math, political science, and criminal justice/legal studies
- **Use “The Redistricting Game”** (<http://www.redistrictinggame.org/>) and “Dave’s Redistricting App 2020”.
- **Focus on explicit categories of**
 - (a) math (quantitative/geometric information),
 - (b) political/partisan contexts, and
 - (c) racial/social justice contexts.

Have students reflect on interconnections among parts (a), (b), and (c) and incorporate ethical considerations.

- ① Collect data from courses at Trinity and Elmira.
- ② Continue to assess the student/instructor experience and improve the redistricting/gerrymandering unit.
- ③ Account for new redistricting commissions and Supreme Court rulings.
- ④ **Kyle F19:** New cross-listed course titled “Mathematics and Redistricting” with CT House Dems as community partner.
- ⑤ **Adam S20:** Team teach? Explore local county redistricting? Connect to required student community service?

- Many general education courses are either “great ideas in math” or “math in the modern world” topics courses. A “math, politics, and social justice” or “math of decision making” course can have a more unifying theme and incorporate both course flavors.
- Such a course can show students that mathematics is inseparable from sociopolitical contexts.
- Such a course can show students that mathematics is a powerful tool that can be used subjectively to make important decisions and create change. Ethical considerations really matter! Math can be a tool for activism!
- Such a course can explicitly address a college’s mission of creating informed and engaged citizens (especially with community partnerships, service learning, etc.).

Thank You!

Questions?

Contact Info:

- Kyle Evans: kyle.evans@trincoll.edu
- Adam Giambrone: agiambrone@elmira.edu

Selected References:

- (1) Gutiérrez, R. (2013). The Sociopolitical Turn in Mathematics Education. *Journal for Research in Mathematics Education*, 44 (1), 37–68.
- (2) Sikorskii, A., Melfi, V., Gilliland, D., Kaplan, J., & Ahn, S. (2011). Quantitative literacy at Michigan State University, 1: Development and initial evaluation of the assessment. *Numeracy*, 4 (2), 5.
- (3) Stinson, D. W. (2014). Teaching mathematics for social justice: An ethical and moral imperative? *Journal of Urban Mathematics Education*, 7 (2), 1–5.